首页> 外文OA文献 >Image Inpainting Using Directional Tensor Product Complex Tight Framelets
【2h】

Image Inpainting Using Directional Tensor Product Complex Tight Framelets

机译:图像修复使用定向张量产品复杂紧   小框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we are particularly interested in the image inpainting problemusing directional complex tight wavelet frames. Under the assumption that framecoefficients of images are sparse, several iterative thresholding algorithmsfor the image inpainting problem have been proposed in the literature. Theoutputs of such iterative algorithms are closely linked to solutions of severalconvex minimization models using the balanced approach which simultaneouslycombines the $l_1$-regularization for sparsity of frame coefficients and the$l_2$-regularization for smoothness of the solution. Due to the redundancy of atight frame, elements of a tight frame could be highly correlated andtherefore, their corresponding frame coefficients of an image are expected toclose to each other. This is called the grouping effect in statistics. In thispaper, we establish the grouping effect property for frame-based convexminimization models using the balanced approach. This result on grouping effectpartially explains the effectiveness of models using the balanced approach forseveral image restoration problems. Inspired by recent development ondirectional tensor product complex tight framelets (TP-CTFs) and theirimpressive performance for the image denoising problem, in this paper wepropose an iterative thresholding algorithm using a single tight frame derivedfrom TP-CTFs for the image inpainting problem. Experimental results show thatour proposed algorithm can handle well both cartoons and texturessimultaneously and performs comparably and often better than several well-knownframe-based iterative thresholding algorithms for the image inpainting problemwithout noise. For the image inpainting problem with additive zero-mean i.i.d.Gaussian noise, our proposed algorithm using TP-CTFs performs superior thanother known state-of-the-art frame-based image inpainting algorithms.
机译:在本文中,我们对使用方向性复杂紧小波框架的图像修复问题特别感兴趣。在图像的帧系数稀疏的假设下,文献中提出了几种用于图像修复的迭代阈值算法。这样的迭代算法的输出与使用平衡方法的多个凸最小化模型的解决方案紧密相关,该平衡方法同时组合了用于帧系数稀疏性的$ l_1 $正则化和用于解决方案平滑度的$ l_2 $正则化。由于小帧的冗余,小帧的元素可以高度相关,因此,期望它们的图像的相应帧系数彼此接近。这称为统计中的分组效果。在本文中,我们使用平衡法建立了基于帧的凸最小化模型的分组效果属性。分组效果的结果部分说明了使用平衡方法解决多个图像恢复问题的模型的有效性。受到最新发展的方向张量积复杂紧框架(TP-CTF)及其对图像去噪问题的出色表现的启发,本文提出了一种基于TP-CTF的单个紧框架的迭代阈值算法来解决图像修复问题。实验结果表明,本文提出的算法可以同时很好地处理卡通和纹理,并且在无噪点的情况下,与几种基于帧的迭代阈值算法相比,具有较好的可比性。对于具有零均值即高斯噪声的图像修复问题,我们提出的使用TP-CTF的算法要优于其他已知的基于帧的图像修复算法。

著录项

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号